
 

 

 

Abstract 
The final report regards the project of constructing 

3D point cloud models from the drone footage video, 

or an uncalibrated image sequence, where a model of 

interest is filmed from different angles. The report 

briefly introduces the overall frame of the problem, 

the plan to approach the problem, the dataset, and the 

expected results. Next, a comprehensive review of 

background and previous work is provided. Then, the 

technical approach is introduced that involves feature 

detecting, matching, fundamental matrix 

approximation, structure from motion, and camera 

calibration. Afterwards, the experiments from the 

above approach are presented via a sparse 3D point 

cloud model, with a comparison to a pre-built pipeline 

of multi-image 3D sparse reconstruction. Finally, a 

conclusion is drawn from the approach and 

experiments, with further work presented as the same 

time. 
 

1. Introduction 

The use of consumer drones is growing, and so is 

consumer cameras. We have seen great footage of 

famous sites taken from on-drone consumer camera. 

In this report, we want to take a step further once we 

obtain these great videos. This involves the use of 

modern technique of computer vision to reconstruct 

the scene we are interested. This project strives to 

provide a pipeline for people to rebuild a 3D point 

cloud model from their own footage video. 

The next following sections introduces the problem 

statement, the dataset that we use, the software 

package, and the expected results and evaluations.  

1.1. Problem Statement 

We are given a short video clip taken from an on-

drone consumer camera, where the drone rotates and 

translates around the subject we are interested to 

reconstruct. The expected outcome from the problem 

is a 3D sparse point cloud model of the interested 

object reconstructed via key points from the scene. 

1.2. Dataset 

The dataset of this project is a video clip (29 

seconds, 50 frames/second, 1920p * 1080p) of the 

multi-views of a church building taken from a drone 

camera [1]. From the video we extracted the first 20 

frames by retrieving one frame every one second. See 

fig.1, fig.2 for illustration. 

 

 
Fig.1 Frame number 600 from the original video. 

 

 
Fig.2 Frame number 800 from the original video. 

 

For this project, we specifically picked nine from all 

frames that have been retrieved. The frames picked 

have an appropriately large baseline, so the 

reconstruction would not be too inaccurate when 

performing the triangulation (see section 3.3). 

1.3. Expected Results and Evaluations 

The expected results for this project would be 

presented via sparse 3D point cloud. Without an 

accurate ground truth model, we want to evaluate our 
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model qualitatively, which typically involves three 

quality metrics:  

 
1. There is a clear indication of a cluster of points 

that correspond to the front surface of the landmark 

we want to reconstruct.  

2. There is a clear indication of a segment of points 

that correspond to the edges and corners of the 

building. 

3. There are few points that does not correspond to 

any part of the building. 

 

Evaluations are compared between an uncalibrated 

multi-view reconstruction case and a calibrated multi-

view reconstruction case. Then, a well-developed 3D 

realization and visualization software, VisualSFM 

developed by C. Wu [2,3], is utilized to compare our 

results to the result from a well-built pipeline. The 

package detail is presented in section 1.4.  

1.4. Available Packages 

The environment we are using is the latest Python 

3.8 version. Meanwhile, we will be utilizing OpenCV-

python for feature selection and matching portion our 

3d visualizing process [4].  

Besides, we will be using VisualSFM, a developed 

3d point cloud visualization software [2,3]. The 

purpose of using the software is to verify the 

completeness and correctness of our own solution. 

2. Review of Previous Work 

 There are various sources we take advantage of in 

building our own pipeline of 3D reconstruction. These 

sources are presented in the sections below. 

2.1. Pollefeys et al.’s Paper (Pipeline) 

 The pipeline of the project is followed mainly from 

the paper written by Pollefeys et al. [5]. The paper 

suggests a complete pipeline from an uncalibrated 

image sequence to a 3D reconstruction model. Our 

project follows the procedure described in section 3 

and 4 in the paper, which involves the building of the 

projective reconstruction and the metric 

reconstruction. The paper provides great insight into 

various aspects of the project as well. This includes 

the use of RANSAC algorithm to estimate the 

fundamental matrix [6], the finding of projection 

matrix, and camera-self calibration process.  

2.2. Various Resources (References) 

 Other resources are for reference use. This includes 

some details that are presented in Pollefey et al.’s 

paper but are not explicitly explained. This typically 

includes work from various journal papers. We will 

talk through those in the following technical approach 

sections.  

3. Technical Approach 

In this section, we want to elaborate on the technical 

approach that is conducted or ready to be conducted 

to effectively solve our problem. The problem is 

broken down into the following steps. 

3.1. Feature Detection and Matching 

 The first step of the reconstruction process is feature 

matching. In this project, we used the SIFT (scaled-

invariant feature transform) algorithm introduced by 

Lawn [7]. The SIFT algorithm is useful in detecting 

edge and blob features between images. An example 

of feature detection via SIFT is shown in Fig.4. 

 
Fig 4. SIFT feature detection in the baseline image. 

 

 After finding the features, we apply the Brute-force 

matching with applied ratio method to find the good 

(confident) correspondences [7,8]. Fig.3 shows the 

SIFT matching between the two base frames of the 

same scene we chose. 

 

 
Fig.3 Feature matching of two frames we picked (Fig.1 

and Fig.2) by brute-force SIFT matching. 

 



 

 

 From the SIFT algorithm, we obtained a total of 

1092 “confident” correspondences. However, because 

our interested model subjects to noises and several 

repetitive structures, the correspondences need to be 

further filtered to be more accurate. This process is 

introduced in section 3.2. 

3.2. Estimating Fundamental Matrix 

 This step of the reconstruction process is to find the 

fundamental matrix relating the two images. The 

traditional eight-point algorithm would be used in 

conjunction with the RANSAC algorithm [6]. An 

example of this algorithm adapted from Pollefeys et 

al.’s paper is as followed [5]: 

Table 1. RANSAC algorithm used to estimate the 

fundamental matrix, adapted from Pollefey et al.’s paper.  

 

 The output of the algorithm not only gives a more 

accurate fundamental matrix estimation but also gives 

reliable inliers that we would use for triangulation in 

the further steps. 

3.3. Structure from Motion 

 This section introduces SFM, from which we 

determine the projective matrix of a set of cameras. 

The procedure is described in section 3.3.1 and 3.3.2 

below.  

 

3.3.1 SFM of a pair of images 
 

  From section 3.2, we have determined a 3*3 

fundamental matrix between two cameras. Denote this 

matrix as F12. We will calculate the epipole of the 

second camera e’ via SVD (singular value 

decomposition) of F12.T (transpose of F12). The 

equation is given by [9]: 

𝐹𝑇
12  ∙  𝑒′ =  0  

 Since F12 is rank-deficient, we could just take the 

last column from v, and normalize it, set this value to 

be e’.  

 From in-class lecture, we understand that given a 

pair of cameras. If we want to obtain their projection 

matrices P1 and P2 to triangulate points in 3D, we 

want to set the first camera matrix to be conic [5,9].  

𝑃1 =  [𝐼3∗3       03∗1] 
The other projection matrix is given as an expression 

of e’ we just calculated [5]: 

𝑃2 =  [[𝑒′𝑥]𝐹12      𝑒′]  
where e’x is the 3*3 cross matrix formulated from e’. 
 

 With the two projection matrices, we could 

triangulate any matched correspondence to a point in 

3D (X) by solving the equations below via SVD [9]: 

𝑥1 =  𝑃1  ∗  𝑋  

𝑥2 = 𝑃2  ∗  𝑋  
where x1, x2 are the homogeneous 2d corresponding 

points in each image.  

 

3.3.2 Adding views - SFM of multiple images 
 

 At this point, we have already obtained a 3D point 

cluster with two views. The next step is to apply more 

frames into our model to adjust our existed 3D points. 

The Pollefey et al.’s paper provides us with some 

insight on this [5]. 

 Once a new view is applied, we applied the method 

in section 3.1 and 3.2 between the initial view and the 

new view. The new correspondences can be further 

categorized into:  

 1. Correspondences that has already been 

established and converted into a 3D point. 

 2.  New correspondences that has not yet been 

established and converted into a 3D point. 

 * Before doing triangulation in the following steps, 

we calculate the new projection matrix based on the 

initial projection matrix from the new fundamental 

matrix.  

3.3.2.1 Point adjustment 

 If correspondences fall into category 1, we will re-

estimate the 3D point using the new projection matrix. 

We record the new 3D coordinate value. 

  After finding all 3D coordinate value, we will use 

RANSAC algorithm again to differentiate inliers from 

outliers by setting up a threshold of a unit ball 

• Repeat numSample times: 
 - randomly select 8 matches from sample 
 - compute F using the eight-point algorithm 
 - count the number of samples (inliers) that 
satisfies a distance threshold: p2.T* F * p1 <= 
threshold. 
- update F if this iteration yields the most inliers. 

• Check if numInlier >= 95%, if not, increase 
threshold value, and run the algorithm again. 

• Use all the inliers to recalculate F.  
 



 

 

distance. We then take the average of those inliers and 

relocate the new 3D points.   

3.3.2.2 Point addition  

 If correspondences fall into category 2, we will 

establish new points based on section 3.3.1. Once new 

points have been determined, record the new 3D 

coordinates and their corresponding match. 

3.4. Camera Self-calibration 

 The camera self-calibration is used to restrict the 

ambiguity occurred in our projective model. Our 

method follows the method described by Pollefey et 

al. [5]. The process involves an initial calibration via 

a linear method and a refined calibration via a non-

linear least-square minimization problem. Our 

algorithm implements the initial calibration portion of 

the camera calibration. 

 Assuming square pixels, same focal length along x 

and y, and centered principal point (where we enforce 

it by centering our data), given three or more 

projection matrices, we could form a system of 

equation described as [5]:  

𝑃𝑘
(1)

Ω𝑃𝑘
(1)𝑇

= 𝑃𝑘
(2)

Ω𝑃𝑘
(2)𝑇

 

𝑃𝑘
(1)

Ω𝑃𝑘
(2)𝑇

= 0 

𝑃𝑘
(2)

Ω𝑃𝑘
(3)𝑇

= 0 

𝑃𝑘
(2)

Ω𝑃𝑘
(3)𝑇

= 0 

Where k >= 3, Ω is 4*4 symmetric matrix with 10 

unknowns. 

 After Ω is solved via SVD, we could decompose it 

using Cholesky decomposition [10]. As suggested in 

the book “Multiple Views Geometry in Computer 

Vision” by R. Hartley and A. Zisserman [11], the rest 

of the algorithm could be formulated as: 

 

 
Fig 4. Algorithm that calculates H from Ω. 

 

 We then found H and could correct our 3D points 

by the in inverse of H: 

𝑃𝑛𝑒𝑤 =  𝐻−1𝑃 

3.5. 3D Point Cloud Visualization 

 The visualization is done by making the 3D scatter 

plot via matplotlib. A more detailed and 

comprehensive analysis will be drawn from the 

comparison of the output from the prebuilt pipeline 

model out from VisualSFM [2,3]. Once the sparse 

point cloud model has been developed, we will 

analyze the different aspects of the model presented in 

1.3. From there, the final evaluation of the model 

could be made. 

4. Experiment 

 This section presents the results of the project, 

which includes the plots of the 3D sparse 

reconstruction model from both the uncalibrated 

views and calibrated views. Also, we will also present 

the resulting plot from VisualSFM to further evaluate 

our calibrated views case. The details of those results 

are given in the following sections: 

4.1. Uncalibrated views  

  The result of the uncalibrated view case is shown 

in the fig. 5. 

 
fig. 5 Uncalibrated Three Views by our own model. 

 

 The result is as expected for the uncalibrated case 

(run before section 3.4). From the graph, we could see 

points are clustered at nearly the center of the z-axis, 

with few other points scattered around. According to 

our metric, we believe that most of the points stayed 

at the same plane, which indicates the front surface of 

the building. However, we do not see clear indication 

of corners and edges under such ambiguity. 



 

 

4.2. Calibrated views (Own model) 

 The result of the calibrated view case is shown in 

the fig. 6.  

 
fig. 6 Calibrated Three Views by our own model. 

 

 The result is not as expected for the calibrated case. 

From the point cloud we obtained, we could clearly 

visualize that the model did not correspond to our 

scene. There are no clear indication of the front plane, 

corners, or edges. The shape of the resulting point 

clouds looks symmetric to the z=0 plane and is cone-

like. A comparison to the outcome run by VisualSFM 

is presented in the following section [2,3]. 

4.3. Calibrated views (VisualSFM [2,3]) 

 The result of the output from running VisualSFM 

software is shown in fig 6 and fig 7.  

 
fig. 6 Calibrated Three Views by VisualSFM model. 

  

 As we could see in fig.6, the 3d sparse 

reconstruction from same three views differ a lot from 

the reconstruction we performed. It is shown clearly 

that most points are clustered on the left-hand side of 

the plot, which corresponds to the front surface. The 

few points on the right corresponds to the side surface. 

There is no clear indication of edges and corners given 

the reconstruction from three views.  

 
 

Fig.7 Calibrated Nine Views by VisualSFM model. 

 

 When more views are added, the sparse 

reconstruction becomes more and more representative 

of the scene. From this point cloud model, we 

visualized that not only the front plane and side plane 

has been clearly segmented, but we could also see 

there are clear indications of corners and edges that 

characterize the shape of the building we are 

interested. 

 As our construction does not successfully 

reconstruct a 3D sparse point cloud model, a further 

investigation the method we chose and the code we 

developed should be launched. The further steps we 

will take are presented in section 5 of the report. 

5. Conclusion 

 In this section, we reflect on some of the issues that 

arise in the project that does not contribute a 

successful reconstruction. Given the problem, we will 

suggest some improvements that could be further 

developed into future work that we will work upon. 

5.1. Problem and Improvement 

 There are multiple areas that could be improved. 

First, there might be too many outliers from SIFT and 

brute-force matching, which leads to the wrong 

estimate of fundamental matrix and usable inliers, 

given we are using the RANSAC algorithm. An 

improvement to this is to  

 Second, the calculation of homograph H is not good 

enough in the camera self-calibration process. This 

leads to further investigation into the codes developed 

and the method we adapted. This typically includes 



 

 

the additional implementation of the non-linear 

optimization process to adjust our H matrix.  

 Third, the point correspondences are not sufficient. 

We need to use more image pairs to get more 

correspondences, and thus filtering out false positive 

from reconstructed model. 

5.2. Future Work 

 Future work should be focusing on fixing the pre-

exist issue described in section 5.1 first. From there, 

we could adjust the 3D points further by implementing 

bundle adjustment algorithm after the self-calibration 

process. After determining a reasonable sparse 

reconstruction model, we could work on creating a 

dense 3d reconstruction model from more matches 

from the images by searching more correspondences 

through epipolar lines.  
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Link to Github 

https://github.com/Yixian-work/cs231a-project 
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