

Abstract
The final report regards the project of constructing

3D point cloud models from the drone footage video,

or an uncalibrated image sequence, where a model of

interest is filmed from different angles. The report

briefly introduces the overall frame of the problem,

the plan to approach the problem, the dataset, and the

expected results. Next, a comprehensive review of

background and previous work is provided. Then, the

technical approach is introduced that involves feature

detecting, matching, fundamental matrix

approximation, structure from motion, and camera

calibration. Afterwards, the experiments from the

above approach are presented via a sparse 3D point

cloud model, with a comparison to a pre-built pipeline

of multi-image 3D sparse reconstruction. Finally, a

conclusion is drawn from the approach and

experiments, with further work presented as the same

time.

1. Introduction

The use of consumer drones is growing, and so is

consumer cameras. We have seen great footage of

famous sites taken from on-drone consumer camera.

In this report, we want to take a step further once we

obtain these great videos. This involves the use of

modern technique of computer vision to reconstruct

the scene we are interested. This project strives to

provide a pipeline for people to rebuild a 3D point

cloud model from their own footage video.

The next following sections introduces the problem

statement, the dataset that we use, the software

package, and the expected results and evaluations.

1.1. Problem Statement

We are given a short video clip taken from an on-

drone consumer camera, where the drone rotates and

translates around the subject we are interested to

reconstruct. The expected outcome from the problem

is a 3D sparse point cloud model of the interested

object reconstructed via key points from the scene.

1.2. Dataset

The dataset of this project is a video clip (29

seconds, 50 frames/second, 1920p * 1080p) of the

multi-views of a church building taken from a drone

camera [1]. From the video we extracted the first 20

frames by retrieving one frame every one second. See

fig.1, fig.2 for illustration.

Fig.1 Frame number 600 from the original video.

Fig.2 Frame number 800 from the original video.

For this project, we specifically picked nine from all

frames that have been retrieved. The frames picked

have an appropriately large baseline, so the

reconstruction would not be too inaccurate when

performing the triangulation (see section 3.3).

1.3. Expected Results and Evaluations

The expected results for this project would be

presented via sparse 3D point cloud. Without an

accurate ground truth model, we want to evaluate our

From drone footage video to 3D reconstruction via point clouds
Yixian Li

Stanford Department of Computer Science

353 Jane Stanford Way, Stanford, CA

S031820@stanford.edu

model qualitatively, which typically involves three

quality metrics:

1. There is a clear indication of a cluster of points

that correspond to the front surface of the landmark

we want to reconstruct.

2. There is a clear indication of a segment of points

that correspond to the edges and corners of the

building.

3. There are few points that does not correspond to

any part of the building.

Evaluations are compared between an uncalibrated

multi-view reconstruction case and a calibrated multi-

view reconstruction case. Then, a well-developed 3D

realization and visualization software, VisualSFM

developed by C. Wu [2,3], is utilized to compare our

results to the result from a well-built pipeline. The

package detail is presented in section 1.4.

1.4. Available Packages

The environment we are using is the latest Python

3.8 version. Meanwhile, we will be utilizing OpenCV-

python for feature selection and matching portion our

3d visualizing process [4].

Besides, we will be using VisualSFM, a developed

3d point cloud visualization software [2,3]. The

purpose of using the software is to verify the

completeness and correctness of our own solution.

2. Review of Previous Work

 There are various sources we take advantage of in

building our own pipeline of 3D reconstruction. These

sources are presented in the sections below.

2.1. Pollefeys et al.’s Paper (Pipeline)

 The pipeline of the project is followed mainly from

the paper written by Pollefeys et al. [5]. The paper

suggests a complete pipeline from an uncalibrated

image sequence to a 3D reconstruction model. Our

project follows the procedure described in section 3

and 4 in the paper, which involves the building of the

projective reconstruction and the metric

reconstruction. The paper provides great insight into

various aspects of the project as well. This includes

the use of RANSAC algorithm to estimate the

fundamental matrix [6], the finding of projection

matrix, and camera-self calibration process.

2.2. Various Resources (References)

 Other resources are for reference use. This includes

some details that are presented in Pollefey et al.’s

paper but are not explicitly explained. This typically

includes work from various journal papers. We will

talk through those in the following technical approach

sections.

3. Technical Approach

In this section, we want to elaborate on the technical

approach that is conducted or ready to be conducted

to effectively solve our problem. The problem is

broken down into the following steps.

3.1. Feature Detection and Matching

 The first step of the reconstruction process is feature

matching. In this project, we used the SIFT (scaled-

invariant feature transform) algorithm introduced by

Lawn [7]. The SIFT algorithm is useful in detecting

edge and blob features between images. An example

of feature detection via SIFT is shown in Fig.4.

Fig 4. SIFT feature detection in the baseline image.

 After finding the features, we apply the Brute-force

matching with applied ratio method to find the good

(confident) correspondences [7,8]. Fig.3 shows the

SIFT matching between the two base frames of the

same scene we chose.

Fig.3 Feature matching of two frames we picked (Fig.1

and Fig.2) by brute-force SIFT matching.

 From the SIFT algorithm, we obtained a total of

1092 “confident” correspondences. However, because

our interested model subjects to noises and several

repetitive structures, the correspondences need to be

further filtered to be more accurate. This process is

introduced in section 3.2.

3.2. Estimating Fundamental Matrix

 This step of the reconstruction process is to find the

fundamental matrix relating the two images. The

traditional eight-point algorithm would be used in

conjunction with the RANSAC algorithm [6]. An

example of this algorithm adapted from Pollefeys et

al.’s paper is as followed [5]:

Table 1. RANSAC algorithm used to estimate the

fundamental matrix, adapted from Pollefey et al.’s paper.

 The output of the algorithm not only gives a more

accurate fundamental matrix estimation but also gives

reliable inliers that we would use for triangulation in

the further steps.

3.3. Structure from Motion

 This section introduces SFM, from which we

determine the projective matrix of a set of cameras.

The procedure is described in section 3.3.1 and 3.3.2

below.

3.3.1 SFM of a pair of images

 From section 3.2, we have determined a 3*3

fundamental matrix between two cameras. Denote this

matrix as F12. We will calculate the epipole of the

second camera e’ via SVD (singular value

decomposition) of F12.T (transpose of F12). The

equation is given by [9]:

𝐹𝑇
12 ∙ 𝑒′ = 0

 Since F12 is rank-deficient, we could just take the

last column from v, and normalize it, set this value to

be e’.

 From in-class lecture, we understand that given a

pair of cameras. If we want to obtain their projection

matrices P1 and P2 to triangulate points in 3D, we

want to set the first camera matrix to be conic [5,9].

𝑃1 = [𝐼3∗3 03∗1]
The other projection matrix is given as an expression

of e’ we just calculated [5]:

𝑃2 = [[𝑒′𝑥]𝐹12 𝑒′]
where e’x is the 3*3 cross matrix formulated from e’.

 With the two projection matrices, we could

triangulate any matched correspondence to a point in

3D (X) by solving the equations below via SVD [9]:

𝑥1 = 𝑃1 ∗ 𝑋

𝑥2 = 𝑃2 ∗ 𝑋
where x1, x2 are the homogeneous 2d corresponding

points in each image.

3.3.2 Adding views - SFM of multiple images

 At this point, we have already obtained a 3D point

cluster with two views. The next step is to apply more

frames into our model to adjust our existed 3D points.

The Pollefey et al.’s paper provides us with some

insight on this [5].

 Once a new view is applied, we applied the method

in section 3.1 and 3.2 between the initial view and the

new view. The new correspondences can be further

categorized into:

 1. Correspondences that has already been

established and converted into a 3D point.

 2. New correspondences that has not yet been

established and converted into a 3D point.

 * Before doing triangulation in the following steps,

we calculate the new projection matrix based on the

initial projection matrix from the new fundamental

matrix.

3.3.2.1 Point adjustment

 If correspondences fall into category 1, we will re-

estimate the 3D point using the new projection matrix.

We record the new 3D coordinate value.

 After finding all 3D coordinate value, we will use

RANSAC algorithm again to differentiate inliers from

outliers by setting up a threshold of a unit ball

• Repeat numSample times:
 - randomly select 8 matches from sample
 - compute F using the eight-point algorithm
 - count the number of samples (inliers) that
satisfies a distance threshold: p2.T* F * p1 <=
threshold.
- update F if this iteration yields the most inliers.

• Check if numInlier >= 95%, if not, increase
threshold value, and run the algorithm again.

• Use all the inliers to recalculate F.

distance. We then take the average of those inliers and

relocate the new 3D points.

3.3.2.2 Point addition

 If correspondences fall into category 2, we will

establish new points based on section 3.3.1. Once new

points have been determined, record the new 3D

coordinates and their corresponding match.

3.4. Camera Self-calibration

 The camera self-calibration is used to restrict the

ambiguity occurred in our projective model. Our

method follows the method described by Pollefey et

al. [5]. The process involves an initial calibration via

a linear method and a refined calibration via a non-

linear least-square minimization problem. Our

algorithm implements the initial calibration portion of

the camera calibration.

 Assuming square pixels, same focal length along x

and y, and centered principal point (where we enforce

it by centering our data), given three or more

projection matrices, we could form a system of

equation described as [5]:

𝑃𝑘
(1)

Ω𝑃𝑘
(1)𝑇

= 𝑃𝑘
(2)

Ω𝑃𝑘
(2)𝑇

𝑃𝑘
(1)

Ω𝑃𝑘
(2)𝑇

= 0

𝑃𝑘
(2)

Ω𝑃𝑘
(3)𝑇

= 0

𝑃𝑘
(2)

Ω𝑃𝑘
(3)𝑇

= 0

Where k >= 3, Ω is 4*4 symmetric matrix with 10

unknowns.

 After Ω is solved via SVD, we could decompose it

using Cholesky decomposition [10]. As suggested in

the book “Multiple Views Geometry in Computer

Vision” by R. Hartley and A. Zisserman [11], the rest

of the algorithm could be formulated as:

Fig 4. Algorithm that calculates H from Ω.

 We then found H and could correct our 3D points

by the in inverse of H:

𝑃𝑛𝑒𝑤 = 𝐻−1𝑃

3.5. 3D Point Cloud Visualization

 The visualization is done by making the 3D scatter

plot via matplotlib. A more detailed and

comprehensive analysis will be drawn from the

comparison of the output from the prebuilt pipeline

model out from VisualSFM [2,3]. Once the sparse

point cloud model has been developed, we will

analyze the different aspects of the model presented in

1.3. From there, the final evaluation of the model

could be made.

4. Experiment

 This section presents the results of the project,

which includes the plots of the 3D sparse

reconstruction model from both the uncalibrated

views and calibrated views. Also, we will also present

the resulting plot from VisualSFM to further evaluate

our calibrated views case. The details of those results

are given in the following sections:

4.1. Uncalibrated views

 The result of the uncalibrated view case is shown

in the fig. 5.

fig. 5 Uncalibrated Three Views by our own model.

 The result is as expected for the uncalibrated case

(run before section 3.4). From the graph, we could see

points are clustered at nearly the center of the z-axis,

with few other points scattered around. According to

our metric, we believe that most of the points stayed

at the same plane, which indicates the front surface of

the building. However, we do not see clear indication

of corners and edges under such ambiguity.

4.2. Calibrated views (Own model)

 The result of the calibrated view case is shown in

the fig. 6.

fig. 6 Calibrated Three Views by our own model.

 The result is not as expected for the calibrated case.

From the point cloud we obtained, we could clearly

visualize that the model did not correspond to our

scene. There are no clear indication of the front plane,

corners, or edges. The shape of the resulting point

clouds looks symmetric to the z=0 plane and is cone-

like. A comparison to the outcome run by VisualSFM

is presented in the following section [2,3].

4.3. Calibrated views (VisualSFM [2,3])

 The result of the output from running VisualSFM

software is shown in fig 6 and fig 7.

fig. 6 Calibrated Three Views by VisualSFM model.

 As we could see in fig.6, the 3d sparse

reconstruction from same three views differ a lot from

the reconstruction we performed. It is shown clearly

that most points are clustered on the left-hand side of

the plot, which corresponds to the front surface. The

few points on the right corresponds to the side surface.

There is no clear indication of edges and corners given

the reconstruction from three views.

Fig.7 Calibrated Nine Views by VisualSFM model.

 When more views are added, the sparse

reconstruction becomes more and more representative

of the scene. From this point cloud model, we

visualized that not only the front plane and side plane

has been clearly segmented, but we could also see

there are clear indications of corners and edges that

characterize the shape of the building we are

interested.

 As our construction does not successfully

reconstruct a 3D sparse point cloud model, a further

investigation the method we chose and the code we

developed should be launched. The further steps we

will take are presented in section 5 of the report.

5. Conclusion

 In this section, we reflect on some of the issues that

arise in the project that does not contribute a

successful reconstruction. Given the problem, we will

suggest some improvements that could be further

developed into future work that we will work upon.

5.1. Problem and Improvement

 There are multiple areas that could be improved.

First, there might be too many outliers from SIFT and

brute-force matching, which leads to the wrong

estimate of fundamental matrix and usable inliers,

given we are using the RANSAC algorithm. An

improvement to this is to

 Second, the calculation of homograph H is not good

enough in the camera self-calibration process. This

leads to further investigation into the codes developed

and the method we adapted. This typically includes

the additional implementation of the non-linear

optimization process to adjust our H matrix.

 Third, the point correspondences are not sufficient.

We need to use more image pairs to get more

correspondences, and thus filtering out false positive

from reconstructed model.

5.2. Future Work

 Future work should be focusing on fixing the pre-

exist issue described in section 5.1 first. From there,

we could adjust the 3D points further by implementing

bundle adjustment algorithm after the self-calibration

process. After determining a reasonable sparse

reconstruction model, we could work on creating a

dense 3d reconstruction model from more matches

from the images by searching more correspondences

through epipolar lines.

References

[1] P. Krabbe. Drone Footage of a Church Building

Exterior. Available from:

https://www.pexels.com/video/drone-footage-of-a-

church-building-exterior-4072222/

[2] Changchang Wu, "VisualSFM: A Visual Structure

from Motion System", http://ccwu.me/vsfm/, 2011

[3] Changchang Wu, Sameer Agarwal, Brian Curless, and

Steven M. Seitz, "Multicore Bundle Adjustment",

CVPR 2011

[4] OpenCV_python interface. Available from

https://pypi.org/project/opencv-python/

[5] M. Pollefeys et al. “Metric 3D Surface Reconstruction

from uncalibrated Image Sequences”. K.U.Leuven,

EXAT-PSI, Kard. Mercierlaan 94, B-3001 Heverlee,

Belgium. Nov. 15, 1998

[6] Martin A. Fischler & Robert C. Bolles (June 1981).

"Random Sample Consensus: A Paradigm for Model

Fitting with Applications to Image Analysis and

Automated Cartography". Comm. ACM. 24 (6): 381–

395. doi:10.1145/358669.358692. S2CID 972888

[7] Lowe, David G. (1999). "Object recognition from local

scale-invariant features". Proceedings of the

International Conference on Computer Vision. 2.

pp. 1150–1157. doi:10.1109/ICCV.1999.790410.

[8] Open-Source Computer Vision. Feature Matching.

Available from:

https://docs.opencv.org/master/dc/dc3/tutorial_py_ma

tcher.html

[9] S. Savarese and J. Bohg. Multi-view Geometry.

Available from:

https://web.stanford.edu/class/cs231a/lectures/lecture

7_SFM.pdf

[10] Dereniowski, Dariusz; Kubale, Marek (2004). "Cholesky

Factorization of Matrices in Parallel and Ranking of Graphs".

5th International Conference on Parallel Processing and

Applied Mathematics. Lecture Notes on Computer Science.

3019. Springer-Verlag. pp. 985–992. doi:10.1007/978-3-

540-24669-5_127. ISBN 978-3-540-21946-0. Archived from

the original on 2011-07-16.

[11] Hartley, R., and Zisserman, A. (2003). Multiple View

Geometry in Computer Vision: Vol. 2nd ed. Cambridge

University Press.

Link to Github

https://github.com/Yixian-work/cs231a-project

(Access granted to the project mentor)

https://www.pexels.com/video/drone-footage-of-a-church-building-exterior-4072222/
https://www.pexels.com/video/drone-footage-of-a-church-building-exterior-4072222/
http://www.cs.ubc.ca/~lowe/papers/iccv99.pdf
http://www.cs.ubc.ca/~lowe/papers/iccv99.pdf
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2FICCV.1999.790410
https://web.stanford.edu/class/cs231a/lectures/lecture7_SFM.pdf
https://web.stanford.edu/class/cs231a/lectures/lecture7_SFM.pdf
https://github.com/Yixian-work/cs231a-project

